

Open Process Automation (OPA): Industry Adoption

Don Bartusiak President, Collaborative Systems Integration (don.bartusiak@csi-automation.com)

> 2025 Foxboro Southeastern User Group Chatanooga, TN 19-20 Feb 2025

Outline

Motivation and Vision

Journey to Solution: Open Process Automation

- Industry standard
- Business ecosystem
- $_{\circ}~$ Conformance certification

Industry adoption: Operating company projects

Coalition for Open Process Automation (COPA) and COPA Control System

- COPA: Who, What, When, Where
- COPA Control System: Technical characteristics
- Initial and Total Cost of Ownership case studies
- Lifecycle support

Conclusions and Recommendations

The Business Problem

High-cost, no-return projects for control system replacements

End User pain points and value opportunities:

- lack of interoperability and inability to reuse their control applications between systems from different suppliers
- excess cost of system upgrades due to close couplings between components
- barriers to value generation from introduction of new technology hardware or software
- after-the-fact, **bolted-on cybersecurity**

Vision for Solution

Current DCS architecture

A standards-based open, secure, interoperable process automation architecture (OPA)

OPA reference architecture

External

- Proprietary hardware, interfaces and networks
- Vendor-controlled software access

evel

DCS

• Cybersecurity not intrinsic: bolted-on, not built in

- OT Data Center Enterprise IT Data Centers / Cloud Non O-PAS Business Virtual DCN Platform Environments DCN OCI Legend O-PAS Conformant Component O-PAS Connectivity Framework (OCF) Non O-P/ Virtual DCN DCN DCN Virtual APP DCN Safety. OCI OCI Electrical APP & Machine OCI - O-PAS Communication Interface
 - Industry standard interfaces and networks ٠
 - Interoperable hardware and software ٠
 - Open software access ٠
 - Designed-in cybersecurity

Open Process Automation Forum of The Open Group

Define the O-PAS[™] standard Develop the **business ecosystem** Certify **product conformance**

- Founded Nov 2016
- Currently 100 member companies
 - $_{\circ}$ 19 operating companies
 - $_{\circ}~$ 6 of 7 global DCS companies
 - Hardware/software suppliers
 - System integrators
 - \circ Universities
 - o Others

O-PAS Standard and Quality Attributes

	O-PAS Part	Subject matter	Referenced standards	Quality Attributes
	Part 1	Technical architecture	IEC 62264 (ISA 95)	Quality Attributes
	Part 2	Security	IEC 62443 (ISA 99)	
	Part 3	Profiles	n.a.	Interenerability
	Part 4	Connectivity framework	IEC 62439 (IEEE 802.3, 1588) IEC 62541 (OPC UA)	Interoperability
	Part 5	System management	DMTF (Redfish)	
	Part 6 (.16)	Information and exchange models	IEC 62714 (AutomationML) IEC 62682 (ISA 18) IEC 61131 IEC 61499	Availability
	Part 7	Physical platform	"whitespace", PCMIG	Manageability
	Part 8 (future)	Application portability	containment	
	Part 9 (future)	System orchestration	TOSCA	
	2019 .			2023 - 2024
In	teroperability	Configuration Portability	Configuration Portability	Configuration Portability Application Portability
0-P/	AS [™] Version 1.0	O-PAS [™] Version 2.0	O-PAS [™] Version 2.1 Preliminary	O-PAS [™] Version 2.1 O-PAS [™] Version 3.0 Final
18 Feb	o 2025		2025 Foxboro SE User Group	(<u>link</u>) 6 of 25

OPA Business Ecosystem

Key publications and activities

- OPA Business Guide: Value Proposition and Business Case (<u>link</u>)
- Marketing and Outreach: "Industry Adoption" theme
 - $_{\circ}~$ End User Caucus meetings
- Liaison relationships
 - $_{\circ}~$ OPC Foundation
 - \circ ISA
 - NAMUR
 - Control System Integrations Assn.
 - \circ Others
- Interoperability events ("plugfests")
- O-PAS Adoption Guide (link)

O-PAS Conformance Certification

Conformance certification started 3Q24

Certification Wave 1a scope:

- DCP-001 Distributed Control Node Platform
- NET-F-001 Single Ethernet to Ethernet
- NET-F-002 Single Ethernet Peer to Peer
- OCF-001 OPC UA Client/Server
- SEC-F-001 IEC 62443-4-2 Cybersecurity
- OSM-002, -003 Redfish (system management)
- **Verification labs**: OPC Foundation, ISA Security Compliance Institute (ISCI), ERDiLab, Others TBN

Registry of certified products

Industry Adoption of OPA

- Test beds and pilot projects
- Production systems

Industry Adoption: End User OPA projects

Company	Test bed	Prototype	Field trial
ExxonMobil			\checkmark
BASF		\checkmark	
Georgia Pacific		\checkmark	
Saudi Aramco	\checkmark		
Dow Chemical		\checkmark	
Equinor		\checkmark	
Shell	\checkmark		
Petronas		\checkmark	
BP		\checkmark	
Reliance Industries	\checkmark		

ExxonMobil's OPA Field Trial "Lighthouse"

ExxonMobil's 3rd OPA system build

Systems integration by

- $_{\circ}~$ Lockheed Martin
- $\circ \ \text{Wood}$
- $_{\circ}$ Yokogawa

Test bed components

Test bed facility (Spring, TX)

Field trial statistics:

- $_{\circ}~$ Manufacturing facility in Louisiana
- $_{\circ}~$ Replace DCS and several PLCs
- Single operator, single console operation
- ~1,000 I/O; 100+ control loops
- Commissioned in Nov 2024
- <u>Corporate press release (10 Feb 2025)</u>

BASF demonstrator

Demonstrate

 \circ OPA

- Module Type Package (MTP)
- NAMUR Open Architecture (NOA)

Components:

- DCN: Phoenix Contact
- \circ OCF: OPC UA
- ACP: HPE computer with WindRiver Titanium hypervisor
- Software: ABB 800xA
- Valves: Samson

Systems integration by

- \circ TU Dresden
- \circ CodeWrights

Georgia Pacific "demo board"

Portable unit for demonstrations at multiple paper mills

Components - DCNs:

- \circ Rockwell
- Phoenix Contact
- \circ Siemens
- \circ Schneider Electric
- \circ Stahl
- $_{\circ}$ Yokogawa

Systems integration by

- $_{\circ}$ Hargrove
- \circ Siemens

Dow Chemical MxD Open Architecture testbed

Plug & play **interoperability across vendors** and technologies

Demonstrate OPA computing framework to deploy open automation and digital twin functions

With ADI, Univ. of Michigan, and Siemens

Equinor, BP, others: COPA QuickStart

Coalition for Open Process Automation (COPA)

- 15 OPAF member companies;
 Separate from OPAF; Span ecosystem roles
- Organized by CSI and CPLANE.ai
- ASRock, Burrow Global, CODESYS, EOSYS, Enterprise Transformation Partners, Inductive Automation, Intel, Nova SMAR, Phoenix Contact, QUEST Global, Stahl, Supermicro, Wood

QuickStart: small functional system and training program

Control Platform: system for piloting or on-production 18 Feb 2025

Architecture

Based on O-PAS Version 2.1 industry standard from the OPA Forum of The Open Group

System

Multi-vendor hardware and software system integrated by CSI and CPLANE

Coalition for Open Process Automation (COPA)

Coalition for Open Process Automation

Purpose: Catalyze OPA ecosystem and adoption

- COPA is independent of OPA Forum
- Organized by CPLANE and CSI in 1Q2022
- 15 member companies currently; Members of OPA Forum; Span the OPA business ecosystem
- COPA QuickStart (system, training)
- COPA Control Platform

O-PAS system building experience - COPA

COPA 500 production systems

1.) Texas A&M: small modular nuclear reactor

2.) Oil & gas supermajor: terminal facility

Control System

COPA Control System characteristics

"Field-proven components in an open architecture"

- Decouple IO and Compute
- Interoperable data communications using OPC UA
- Decouple software from hardware
 - O-PAS Connectivity Framework (OCF) for interoperability
 - High availability (software-defined redundancy) for unplanned outages
 - Zero-downtime hardware/software upgrades
- Portable, reusable applications via industry standard languages (IEC 61131) and virtualization/containers
- Cybersecurity using role-based access, authentication, encryption, etc.
- IT-proven, automated systems management and orchestration
- Business value creation with third-party technology insertion

Benefits: Initial- and Total Cost of Ownership

Cargill edible oils process

- Greenfield plant
- 14,000 I/O; 4-20mA HART
- Redundant network and DCN hardware
- IEC 62443 Security Level ≥ 2

<u>Case study 1</u>: EPCcalculated initial- and 25yr TCO

<u>Case study 2</u>: Cargillcalculated TCO

18 Feb 2025

Economic case study results

1.) Wood-calculated comparison: COPA v. DCS₁ (normalized to DCS₁ TIC)

Costs (thousand USD)	DCS ₁	СОРА	COPA/DCS ₁
Hardware & System software	0.272	0.130	48%
Engineering & Construction (detail engineering, install, commission)		0.772	106%
Total Initial Cost		0.902	90%
25-yr Total Cost of Ownership (excl. initial cost)		0.759	53%

2.) Cargill-calculated comparison: COPA v. DCS_i (i = 1,2,3) (normalized to COPA TCO)

Costs (thousand EUR)	DCS ₁	DCS ₂	DCS ₃	СОРА
25-yr Total Cost of Ownership (incl. plant downtime)	3.39	2.52	2.64	1.00
COPA/DCS _i	29%	40%	38%	

COPA Control System lifecycle support

- Systems Integrator: During project stage, integrates entire O-PAS system as the single point of contact and primary responsibility for system performance.
- Service Provider: During post-commissioning period, provides on-going maintenance and upgrades.

Conclusions

Concluding remarks

OPA is transformative

• Addressing root causes to reduce total cost of ownership and enable innovation/value generation

Business case for OPA **is compelling** – 60-70% TCO savings

OPA Forum is End User driven

Industry adoption progressing with first-mover users, suppliers, & system integrators

- At least 10 OPA pilot projects
- RFIs and RFPs for OPA production systems being issued
- Production systems in service ExxonMobil "Lighthouse"

COPA is **leading O-PAS commercialization**

COPA Control System is ready for production in 2025

Backup

Shell test bed

Laboratory investigation of O-PAS greenfield integration with brownfield

Petronas pilot system

200 I/O system in Upstream training facility

Why is PETRONAS developing OPA Testbed? **Testbed Deployment and Capability Planning** What is OPA What is OPA Test Bed Project · OPA system is a standard-based open secure, Objective: interoperable process automation architecture where Q3 - 2022 Q4 - 2022 To demonstrate functionality of OPA as a Q3 -2022 End Users will benefit from the choices of best-in class viable DCS-of-future technology Application. Interoperability, interchangeability, 日前 Conventional or Legacy DCS are closed and proprietary Q1 & Q2-2022 configuration portability, application system which uses propriety hardware, interfaces and Module Handover portability. Site networks with Manufacturer-controlled software access. To prepare & upskill internal resources for Development Installation & Handover of future adoption of OPA technology. Collaboration Start testbed to INSTEP FAT **Current DCS architecture OPA** reference architecture Upskilling of INSTEP. Testing Agreement staff for module Test Bed **Factory Acceptance** SI Partner & Vendors: Installation, development & Start Test for OPA System Signing Development Yokogawa, Phoenix Contact, ASRock, delivery. Awarded to Yokogawa at YKM commissioning & Design, Engineering & Signing collaboration Schneider Electric, STAHL Testing of OPA Procurement of the agreement between system at UDTP Test Bed PETRONAS & Location of Testbed: ExacnMobil UDTP Plant INSTEP Terengganu Completed matany bandurana, interflatana and 200 I/O (Hardwired & Soft Signals) Planned Intendor-controlled soft-are access We are here! Security roll internet, Solled-on, not look in PETROMAS A PETRONAS

COPA QuickStart unit

Software Components

Supplier	Software Component
Inductive Automation	Historian
Inductive Automation	HMI & Alarms
CPLANE.ai	Systems Management
Canonical & Intel	Virtualization & OS
CODESYS	IDE
CPLANE.ai & Intel	Orchestration
Canonical & CPLANE.ai	Software services
CSI	Model Predictive Control
CODESYS, SMAR &CSI	61131 Regulatory Control
ASRock, VECOW, Supermicro	Redfish
Phoenix Contact & Stahl	OPC UA & Redfish
Phoenix Contact & Stahl	4-20 mA <-> OPC UA
VP Process & CSI	Simulation

COPA System scales up and down

